Real World DANE
Inter-domain email transport

Viktor Dukhovni
<ietf-dane@dukhovni.org>
Overview

1. Background

2. DANE if you don't (DNSSEC hygiene)

3. DANE if you do (plan, automate, monitor)

4. DANE survey

5. Appendix
Email Security

1. auth TLS

Sender

MSA

MTA+ IMAP

Rcpt

3. auth TLS
Email Security

Then a miracle occurs

1. auth TLS

Sender

2. MTA-to-MTA SMTP

3. auth TLS

Rcpt

MTA+

IMAP

MSA
Email Security

2. MTA-to-MTA SMTP

Then a miracle occurs

"I think you should be more explicit here in step two."

1. auth TLS

Sender

MSA

2. MTA-to-MTA SMTP

MTA+ IMAP

Rcpt

3. auth TLS
Email Security

Opportunistic (START)TLS

Resists Passive monitoring
Vulnerable to active attacks:
 - BGP hijacking
 - DNS forgery
 - STARTTLS stripping

1. auth TLS

Sender

MSA

Opportunistic (START)TLS

3. auth TLS

Rcpt

MTA+ IMAP
Gmail STARTTLS growth

https://transparencyreport.google.com/safer-email/overview
Improving SMTP Security

• Resist active attacks:
 • Must be downgrade-resistant, even on first contact
 • Must support mixed environment
 • Must signal which peers to encrypt
 • Must indicate how to authenticate each peer
SMTP is not like HTTPS

https://tools.ietf.org/html/rfc7672#section-1.3

• Must trust DNS for authentic MX hosts

• Web CA trust would be problematic
 • Too many CAs to trust, but no user to "click OK"
 • Can't avoid trusting them all
DNS-Based Authentication of Named Entities (DANE)

- In SMTP, presence of DANE TLSA records is a contract to support STARTTLS:

 _25._tcp.mx1.example.com. TLSA 3 1 1 curr-pubkey-sha256

 _25._tcp.mx1.example.com. TLSA 3 1 1 next-pubkey-sha256

- Supported parameters (e.g. "3 1 1") are a contract to present a matching certificate chain for authentication

- Authenticates domain control via DNSSEC, no extraneous trusted third parties

- DNSSEC ensures downgrade protection
Coexisting with DANE

- DANE senders skip MX hosts that fail TLSA lookups
- When all MX hosts are skipped, delivery is deferred
- For DNSSEC-signed domains without TLSA records:
 - TLSA Denial of Existence (DoE) must function correctly
- DANE is first application protocol to need reliable DoE
DNSSEC Hygiene

• EDNS(0) support, NSEC3 support, for all nameservers
• Don't block IP fragments
• Reply NODATA or NXDomain, not NOTIMP, REFUSED, ...
• Test correct DoE for each edge case
• Monitor nameservers for correct DoE handling
Avoid DNS query filtering

- Some firewalls offer misguided filtering features, blocking TLSA, CAA, CDS, ... lookups

- These break more than DANE

- Turn off filters that block queries for some record types

- Monitor correct responses for unexpected types:

 $ dig -t TYPE12345 example.com. -> NODATA
 $ dig -t TYPE12345 n.x.example.com. -> NXDomain

DNSSEC checklist

• Keep name-server software up to date
• Test zones with apex wildcard A or wildcard CNAMEs
• Test zones with empty non-terminals
• Avoid SOA serial number changes after signing
• Avoid NSEC3 opt-out in most zones

• Avoid high NSEC3 (extra) iteration counts (0 is BCP!)

https://lists.dns-oarc.net/pipermail/dns-operations/2017-December/017127.html
https://lists.dns-oarc.net/pipermail/dns-operations/2018-January/017173.html
Check DNSViz

http://dnsviz.net/d/_25._tcp.mx2.techtrack.gov/WnYN-A/dnssec/

ICANN61 | San Juan, Puerto Rico | March 2018
Adopting DANE

• Deploying DNSSEC is the main barrier
• Coordinating TLSA records and cert chain may look hard
• We'll make it easy
Outbound DANE

- Need DNSSEC validating resolver, **local** to the MTA
- DANE-enabled MTA (Postfix, Exim, Cloudmark, ...)
- Enable DANE as documented
- Make a few policy exceptions:

 https://github.com/danefail/list
Inbound DANE

• Need STARTTLS-capable SMTP server
• DNSSEC-signed MX records
• DNSSEC-signed TLSA records for each MX host
 • Provider's responsibility if MX hosts outsourced!
 • Including management of key and certificate rotation
TLSA records

- **3 1 1**: certificate usage DANE-EE(3):
 - Publishes end-entity (server) public key SHA256 hash

- **2 1 1**: certificate usage DANE-TA(2):
 - Publishes trust-anchor (CA) public key SHA256 hash
 - If you the CA is secure enough

- Rest of record is hash value:
  ```
  $ dig +nosplit +short -t tlsa _25._tcp.mail.ietf.org
  3 1 1 0c72....d3d6
  ```
Predicting the future

- Need matching TLSA in place when chain is updated
- TLSA records can include present and future values
- Publish keys well in advance of obtaining certificates
- Two models:
 - EE Key + Next EE Key: (3 1 1 + 3 1 1)
 - EE Key + TA Key: (3 1 1 + 2 1 1)
Current + Next

• Generate next key when deploying current key and cert

• Deploy new chain, and publish new TLSA records:

 _25._tcp.mx.example.com. IN TLSA 3 1 1 curr-pubkey-sha256
 _25._tcp.mx.example.com. IN TLSA 3 1 1 next-pubkey-sha256

• Weeks later, obtain certificate for pre-generated next key†

 • But first, make sure TLSA record is already in place

• Repeat!

† With Let's Encrypt, use certbot "--csr" option
Current + Issuer CA

- Publish TLSA RRs for server key & issuer CA key

 _25._tcp.mx.example.com. IN TLSA 3 1 1 ee-pubkey-sha256
 _25._tcp.mx.example.com. IN TLSA 2 1 1 ta-pubkey-sha256

- Deploy certificates from same CA, if EE key changes:

 - Promptly update 3 1 1 hash to match new EE key

- If CA key changes, keep same EE key

 - Obtain cert from new CA

 - Promptly update 2 1 1 hash to match new CA key
Automate

- Automate:
 - TLSA record updates and zone re-signing
 - Key rollover
 - Cert chain acquisition and deployment
- Have working contacts in WHOIS, SOA, postmaster
Monitor

- DNSSEC DS and DNSKEY records
- DNSSEC signatures (avoid near expiration)
- Slave nameserver synchronization
- TLSA records matching of live cert chain
Operational BCP

- Publish the current and next TLSA record
- Don't offer STARTTLS selectively to just some clients
- Use a separate certificate for each MX hosts
- Stagger certificate rotation for separate MX hosts
- Publish TLSA RRs for each each deployed certificate type: RSA, ECDSA, ...
DANE software

- Postfix, Exim, Cloudmark, https://mailinabox.email, ...

- OpenSSL $\geq 1.1.0$ DANE verification API

 https://www.openssl.org/docs/man1.1.0/ssl/SSL_CTX_dane_enable.html

- GnuTLS (somewhat incomplete)

- Maintainers of DANE S/W please get in touch
DANE tools

- https://dane.sys4.de/ and list dane-users@sys4.de
- https://github.com/letoams/hash-slinger
- https://github.com/PennockTech/smtpdane
- https://github.com/vdukhovni/danecheck
- Bare knuckles† with openssl s_client

† see last two slides of Appendix.
DANE SMTP Survey

• Monitors domains directly delegated from public suffixes

• Notifies operators of botched key/cert rotation

• Sourced from ICANN CZDS, Verisign, https://scans.io/, open access for .se, .nu, .fr, ... (more ccTLD data wanted)

• Covers ~200 million candidate domain names

• Captures DS, DNSKEY, MX, A, AAAA, TLSA records

• Captures certificate chains of MX hosts
Survey Stats

- 5.2 million domains with DNSSEC-validatetd MX
- 178 thousand domains with DANE SMTP
- Millions of users (gmx.de, web.de, comcast.net)
- 5253 DANE MX hosts in 3585 zones
- ~100 domains with TLSA record lookup problems
- ~150 domains with wrong TLSA records or no STARTTLS
Zones of DANE MX hosts

![Graph showing the growth of zones of DANE MX hosts from 2016 to 2018.](image-url)
Well known DANE domains

gmx.at
registro.br
gmx.ch
open.ch
gmx.com
isavedialogue.com
mail.com
solvinity.com
trashmail.com
xfinity.com
xfinityhomesecurity.com
bund.de
freenet.de

gmx.de
jpberlin.de
lrz.de
mail.de
posteo.de
ruhr-uni-bochum.de
unitymedia.de
web.de
octopuce.fr
comcast.net
dd24.net
gmx.net
hr-manager.net

t-2.net
xs4all.net
ouderportaal.nl
overheid.nl
xs4all.nl
domeneshop.no
debian.org
freebsd.org
gentoo.org
ietf.org
netbsd.org
samba.org
torproject.org
Almost-DANE domains

<table>
<thead>
<tr>
<th>Thousands of DNSSEC MX RRrs</th>
<th>Provider yet to deploy DANE TLSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,427</td>
<td>ovh.net</td>
</tr>
<tr>
<td>875</td>
<td>one.com</td>
</tr>
<tr>
<td>651</td>
<td>google.com</td>
</tr>
<tr>
<td>335</td>
<td>googlemail.com</td>
</tr>
<tr>
<td>307</td>
<td>firstfind.nl</td>
</tr>
<tr>
<td>168</td>
<td>mijndomain.nl</td>
</tr>
<tr>
<td>104</td>
<td>outlook.com</td>
</tr>
<tr>
<td>80</td>
<td>pcextreme.nl</td>
</tr>
<tr>
<td>73</td>
<td>argewebhosting.nl</td>
</tr>
<tr>
<td>56</td>
<td>wedos.net</td>
</tr>
</tbody>
</table>
Help wanted

- More ccTLD lists of signed delegations
- Please remediate denial of existence issues
- Please enable DANE *outbound* even if own domain unsigned
- Please enable DNSSEC and DANE on hosting MX servers
 - Especially when hosting thousands signed domains
 - ovh.net, googlemail.com, ...
 - Or, more than 10^7 as yet unsigned domains (secureserver.net)
Appendix

- Gmail TLS status
- SMTP-STS
- DNSViz samples
- Survey metrics
- DANE tools
Gmail TLS status

- Outbound TLS much like inbound presently at ~90%
- Remaining 10% mostly bulk marketing
- Some user-mailbox domains yet to adopt STARTTLS!
Gmail TLS

https://transparencyreport.google.com/safer-email/overview

ICANN61 | San Juan, Puerto Rico | March 2018
Non-TLS domains

Top domains by region: Inbound

<table>
<thead>
<tr>
<th>Domain</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>From: cmail19.com via createsend.com</td>
<td>93%</td>
</tr>
<tr>
<td>From: cmail20.com via createsend.com</td>
<td>93%</td>
</tr>
<tr>
<td>From: cuenote.jp</td>
<td>73%</td>
</tr>
<tr>
<td>From: ed10.net via ed10.com</td>
<td>22%</td>
</tr>
<tr>
<td>From: emergencyemail.org</td>
<td>0%</td>
</tr>
<tr>
<td>From: prohirespowerhouse.com</td>
<td>0%</td>
</tr>
<tr>
<td>From: secureserver.net</td>
<td>62%</td>
</tr>
<tr>
<td>From: timesjobs.com via tsbl.in</td>
<td>0%</td>
</tr>
<tr>
<td>From: wattpadmail.com</td>
<td>10%</td>
</tr>
<tr>
<td>From: wayfair.com</td>
<td>5%</td>
</tr>
</tbody>
</table>

Top domains by region: Outbound

<table>
<thead>
<tr>
<th>Domain</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>To: alice.it via aliceposta.it</td>
<td>0%</td>
</tr>
<tr>
<td>To: amazon.{}</td>
<td>51%</td>
</tr>
<tr>
<td>To: bigpond.com</td>
<td>0%</td>
</tr>
<tr>
<td>To: btinternet.com via cpcloud.co.uk</td>
<td>0%</td>
</tr>
<tr>
<td>To: cox.net</td>
<td>2%</td>
</tr>
<tr>
<td>To: docomo.ne.jp</td>
<td>0%</td>
</tr>
<tr>
<td>To: ezweb.ne.jp</td>
<td>0%</td>
</tr>
<tr>
<td>To: nauta.cu via etecsa.net</td>
<td>0%</td>
</tr>
<tr>
<td>To: uol.com.br</td>
<td>0%</td>
</tr>
<tr>
<td>To: yahoo.co.jp</td>
<td>0%</td>
</tr>
</tbody>
</table>

Mon, Feb 5, 2018

https://transparencyreport.google.com/safer-email/overview

ICANN61 | San Juan, Puerto Rico | March 2018
SMTP-STS

- SMTP-STS: compromise for the DNSSEC-challenged
 - Still can and should prefer DANE outbound
 - Authenticates domain control via CA leap of faith!
 - Vulnerable to MiTM at cert bootstrap
 - Vulnerable to weakest root CA, and unauthorized certs
 - Open to downgrade on first (or irregular) contact
 - Complex mix of HTTPS, unsigned DNS and SMTP
DNSViz samples

- Examples of various name-server edge-cases
- Follow links to live DNSViz site
- Mouse-over "red" elements provides more detail
TLSA queries blocked (resolved)

http://dnsviz.net/d/25._tcp.mx.tiviths.com.br/WnYSUq/dnssec/
NSEC covers wrong wildcard

http://dnsviz.net/d/_25._tcp.mx1.marketconservative.com/Wm_E1w/dnssec/
Misused zone apex wildcard

http://dnsviz.net/d/25._tcp.mail.code-lab.nl/WgddbA/dnssec/
primary nameserver: ns3.firstfind.nl
Wildcard ENT NODATA (resolved)

http://dnsviz.net/d/25._tcp.merchantsgrotto.com/WnezZQ/dnssec/
primary nameserver: ns-cloud-e1.googledomains.com
Survey metrics

- Adoption primarily in Northern Europe and USA
- Steady growth in MX count driven by adopting organizations
- Domain count jumps driven by hosting provider adoption
- But also smaller scale in Indonesia, Tanzania, ...
#DANE SMTP domains
DNSSEC by TLD

<table>
<thead>
<tr>
<th>DNSSEC domains x1000</th>
<th>TLD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,357</td>
<td>NL</td>
</tr>
<tr>
<td>837</td>
<td>SE</td>
</tr>
<tr>
<td>781</td>
<td>COM</td>
</tr>
<tr>
<td>382</td>
<td>FR</td>
</tr>
<tr>
<td>297</td>
<td>CZ</td>
</tr>
<tr>
<td>287</td>
<td>EU</td>
</tr>
<tr>
<td>220</td>
<td>NO</td>
</tr>
<tr>
<td>172</td>
<td>DE</td>
</tr>
<tr>
<td>133</td>
<td>NU</td>
</tr>
<tr>
<td>114</td>
<td>NET</td>
</tr>
<tr>
<td>108</td>
<td>BR</td>
</tr>
<tr>
<td>407</td>
<td>other</td>
</tr>
</tbody>
</table>
Top 10 DANE providers

<table>
<thead>
<tr>
<th>#domains</th>
<th>Provider</th>
</tr>
</thead>
<tbody>
<tr>
<td>68,318</td>
<td>domeneshop.no</td>
</tr>
<tr>
<td>64,011</td>
<td>transip.nl</td>
</tr>
<tr>
<td>19,137</td>
<td>udmedia.de</td>
</tr>
<tr>
<td>6,183</td>
<td>bhosted.nl</td>
</tr>
<tr>
<td>1,792</td>
<td>nederhost.nl</td>
</tr>
<tr>
<td>1,230</td>
<td>yourdomainprovider.net</td>
</tr>
<tr>
<td>760</td>
<td>ec-elements.com</td>
</tr>
<tr>
<td>564</td>
<td>surfmailfilter.nl</td>
</tr>
<tr>
<td>537</td>
<td>core-networks.de</td>
</tr>
<tr>
<td>437</td>
<td>omc-mail.com</td>
</tr>
<tr>
<td>15,909</td>
<td>other</td>
</tr>
</tbody>
</table>
DANE MX host IPv4 GeoIP

<table>
<thead>
<tr>
<th>#MX IP</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,273</td>
<td>DE, Germany</td>
</tr>
<tr>
<td>770</td>
<td>US, United States</td>
</tr>
<tr>
<td>445</td>
<td>NL, Netherlands</td>
</tr>
<tr>
<td>331</td>
<td>FR, France</td>
</tr>
<tr>
<td>160</td>
<td>UK, United Kingdom</td>
</tr>
<tr>
<td>108</td>
<td>CZ, Czech Republic</td>
</tr>
<tr>
<td>78</td>
<td>CA, Canada</td>
</tr>
<tr>
<td>59</td>
<td>SE, Sweden</td>
</tr>
<tr>
<td>57</td>
<td>CH, Switzerland</td>
</tr>
<tr>
<td>54</td>
<td>BR, Brazil</td>
</tr>
<tr>
<td>360</td>
<td>other</td>
</tr>
</tbody>
</table>
DANE MX host IPv6 GeoIP

<table>
<thead>
<tr>
<th>#MX IP</th>
<th>Country</th>
</tr>
</thead>
<tbody>
<tr>
<td>698</td>
<td>DE, Germany</td>
</tr>
<tr>
<td>382</td>
<td>US, United States</td>
</tr>
<tr>
<td>249</td>
<td>NL, Netherlands</td>
</tr>
<tr>
<td>190</td>
<td>FR, France</td>
</tr>
<tr>
<td>99</td>
<td>UK, United Kingdom</td>
</tr>
<tr>
<td>61</td>
<td>CZ, Czech Republic</td>
</tr>
<tr>
<td>35</td>
<td>SE, Sweden</td>
</tr>
<tr>
<td>27</td>
<td>SG, Singapore</td>
</tr>
<tr>
<td>25</td>
<td>CH, Switzerland</td>
</tr>
<tr>
<td>13</td>
<td>SI, Slovenia</td>
</tr>
<tr>
<td>124</td>
<td>other</td>
</tr>
</tbody>
</table>
DANE in ccTLDs

- 125 out of 247 ccTLDs have DNSSEC
- 114 have at least one DNSSEC delegated domain
- 73 have DANE-enabled domains, 19 have more than 100:
 - 10000+: nl, no, de
 - 1000+: eu, be, se, nu
 - 100+: uk, dk, cz, fr, at, ch, us, me, io, hu, tv, fi
OpenSSL DANE check

- Bash shell function to retrieve TLSA records
- Check SMTP server certificate chain vs. TLSA records
- Requires OpenSSL 1.1.0 or later
$ danesmtp() {
 local host=$1; shift
 local opts=(-starttls smtp -connect "$host:25" \
 -verify 9 -verify_return_error -brief \
 -dane_ee_no_namechecks -dane_tlsa_domain "$host")
 set -- $(dig +short +nosplit -t tlsa ".25._tcp.$host" |
 egrep -i '^[23][01][012][0-9a-f]+$')
 while [$# -ge 4]
 do
 opts="${opts[@]}" "-dane_tlsa_rrdata" "$1 $2 $3 $4"
 shift 4
 done
 (sleep 1; printf "QUIT\r\n") | openssl s_client "${opts[@]}"
}

$ danesmtp mail.ietf.org
...
Protocol version: TLSv1.2
Ciphersuite: ECDHE-RSA-AES256-GCM-SHA384
Peer certificate: OU = Domain Control Validated, CN = *.ietf.org
Hash used: SHA512
Verification: OK
DANE TLSA 3 1 1 ...e7cb23e5b514b56664c5d3d6 matched EE certificate at depth 0
...

$ echo $?
0

ICANN61 | San Juan, Puerto Rico | March 2018